- Demographics
Description

Population demographics for Saudi Arabia in a high-resolution data format disaggregated to be high resolution of 100 meter
Business Model:
Aggregation Date:
Raw Data Table
longitude | latitude | female_0 | female_1 | female_5 | female_10 | female_15 | female_20 | female_25 | female_30 | female_35 | female_40 | female_45 | female_50 | female_55 | female_60 | female_65 | female_70 | female_75 | female_80 | male_0 | male_1 | male_5 | male_10 | male_15 | male_20 | male_25 | male_30 | male_35 | male_40 | male_45 | male_50 | male_55 | male_60 | male_65 | male_70 | male_75 | male_80 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.74833315 | 26.6775001 | 0.152362 | 0.581351 | 0.672585 | 0.594218 | 0.50346 | 0.567501 | 0.723531 | 0.714925 | 0.659219 | 0.621064 | 0.540771 | 0.382602 | 0.266809 | 0.153665 | 0.105486 | 0.0537414 | 0.0308642 | 0.0241722 | 0.170959 | 0.652961 | 0.795025 | 0.706033 | 0.607925 | 0.722746 | 1.00597 | 1.28052 | 1.26541 | 1.2312 | 0.971141 | 0.640242 | 0.442138 | 0.24725 | 0.152973 | 0.0645099 | 0.0412962 | 0.0338261 |
49.74833315 | 26.67666676 | 0.159109 | 0.607094 | 0.702369 | 0.620531 | 0.525753 | 0.592631 | 0.75557 | 0.746583 | 0.68841 | 0.648566 | 0.564717 | 0.399544 | 0.278624 | 0.16047 | 0.110157 | 0.0561212 | 0.0322309 | 0.0252426 | 0.17853 | 0.681875 | 0.830231 | 0.737297 | 0.634845 | 0.75475 | 1.05052 | 1.33723 | 1.32144 | 1.28572 | 1.01414 | 0.668593 | 0.461717 | 0.258198 | 0.159747 | 0.0673665 | 0.0431248 | 0.035324 |
49.74916648 | 26.67666676 | 0.173956 | 0.663746 | 0.767911 | 0.678437 | 0.574815 | 0.647933 | 0.826077 | 0.816251 | 0.75265 | 0.709087 | 0.617414 | 0.436828 | 0.304624 | 0.175444 | 0.120436 | 0.0613582 | 0.0352386 | 0.0275981 | 0.195189 | 0.745505 | 0.907705 | 0.806099 | 0.694086 | 0.82518 | 1.14855 | 1.46201 | 1.44475 | 1.4057 | 1.10878 | 0.730984 | 0.504803 | 0.282293 | 0.174654 | 0.0736528 | 0.0471491 | 0.0386203 |
49.74999982 | 26.67666676 | 0.173703 | 0.662777 | 0.766791 | 0.677447 | 0.573976 | 0.646988 | 0.824872 | 0.81506 | 0.751552 | 0.708053 | 0.616513 | 0.43619 | 0.30418 | 0.175188 | 0.120261 | 0.0612687 | 0.0351871 | 0.0275579 | 0.194905 | 0.744418 | 0.90638 | 0.804923 | 0.693074 | 0.823977 | 1.14687 | 1.45988 | 1.44265 | 1.40365 | 1.10716 | 0.729917 | 0.504066 | 0.281881 | 0.174399 | 0.0735454 | 0.0470803 | 0.0385639 |
49.78333315 | 26.64333343 | 0.156525 | 0.597234 | 0.690962 | 0.610453 | 0.517215 | 0.583006 | 0.743299 | 0.734458 | 0.67723 | 0.638032 | 0.555546 | 0.393055 | 0.274099 | 0.157864 | 0.108368 | 0.0552098 | 0.0317074 | 0.0248326 | 0.17563 | 0.670801 | 0.816747 | 0.725323 | 0.624534 | 0.742492 | 1.03346 | 1.31551 | 1.29998 | 1.26484 | 0.997674 | 0.657735 | 0.454218 | 0.254005 | 0.157153 | 0.0662724 | 0.0424245 | 0.0347503 |
49.78583315 | 26.64333343 | 0.183989 | 0.702025 | 0.812198 | 0.717564 | 0.607965 | 0.6853 | 0.873718 | 0.863326 | 0.796057 | 0.749981 | 0.653022 | 0.46202 | 0.322192 | 0.185562 | 0.127382 | 0.0648968 | 0.0372708 | 0.0291898 | 0.206446 | 0.7885 | 0.960053 | 0.852588 | 0.734115 | 0.87277 | 1.21479 | 1.54633 | 1.52807 | 1.48677 | 1.17273 | 0.773141 | 0.533915 | 0.298573 | 0.184727 | 0.0779005 | 0.0498683 | 0.0408476 |
49.78666648 | 26.64333343 | 0.187107 | 0.713922 | 0.825962 | 0.729724 | 0.618269 | 0.696914 | 0.888525 | 0.877957 | 0.809548 | 0.762692 | 0.664089 | 0.46985 | 0.327653 | 0.188707 | 0.129541 | 0.0659967 | 0.0379025 | 0.0296845 | 0.209945 | 0.801863 | 0.976324 | 0.867037 | 0.746557 | 0.887561 | 1.23537 | 1.57254 | 1.55397 | 1.51197 | 1.1926 | 0.786244 | 0.542964 | 0.303633 | 0.187857 | 0.0792207 | 0.0507134 | 0.0415398 |
49.78583315 | 26.6425001 | 0.185313 | 0.707077 | 0.818043 | 0.722728 | 0.612341 | 0.690232 | 0.880006 | 0.869539 | 0.801786 | 0.755379 | 0.657721 | 0.465345 | 0.324511 | 0.186898 | 0.128299 | 0.0653639 | 0.037539 | 0.0293998 | 0.207932 | 0.794174 | 0.966962 | 0.858724 | 0.739398 | 0.879051 | 1.22353 | 1.55746 | 1.53907 | 1.49747 | 1.18117 | 0.778705 | 0.537758 | 0.300721 | 0.186056 | 0.0784611 | 0.0502271 | 0.0411415 |
49.78666648 | 26.6425001 | 0.186007 | 0.709724 | 0.821105 | 0.725433 | 0.614633 | 0.692816 | 0.8833 | 0.872794 | 0.804788 | 0.758207 | 0.660183 | 0.467087 | 0.325726 | 0.187598 | 0.128779 | 0.0656086 | 0.0376796 | 0.0295099 | 0.20871 | 0.797147 | 0.970582 | 0.861938 | 0.742166 | 0.882342 | 1.22811 | 1.56329 | 1.54483 | 1.50308 | 1.18559 | 0.78162 | 0.539771 | 0.301847 | 0.186753 | 0.0787549 | 0.0504152 | 0.0412956 |
49.78749982 | 26.6425001 | 0.195266 | 0.745056 | 0.861981 | 0.761547 | 0.645231 | 0.727306 | 0.927273 | 0.916243 | 0.844851 | 0.795952 | 0.693049 | 0.49034 | 0.341941 | 0.196936 | 0.13519 | 0.0688747 | 0.0395553 | 0.030979 | 0.2191 | 0.836831 | 1.0189 | 0.904847 | 0.779113 | 0.926266 | 1.28925 | 1.64111 | 1.62174 | 1.5779 | 1.24461 | 0.820531 | 0.566642 | 0.316874 | 0.19605 | 0.0826754 | 0.0529249 | 0.0433513 |
49.78833315 | 26.6425001 | 0.211738 | 0.807906 | 0.934695 | 0.825788 | 0.69966 | 0.788659 | 1.00549 | 0.993535 | 0.91612 | 0.863096 | 0.751512 | 0.531703 | 0.370786 | 0.213549 | 0.146594 | 0.0746848 | 0.0428921 | 0.0335923 | 0.237583 | 0.907423 | 1.10485 | 0.981177 | 0.844836 | 1.0044 | 1.398 | 1.77955 | 1.75854 | 1.71101 | 1.3496 | 0.889748 | 0.614442 | 0.343604 | 0.212588 | 0.0896497 | 0.0573895 | 0.0470083 |
49.78583315 | 26.64166676 | 0.18563 | 0.708285 | 0.819441 | 0.723963 | 0.613387 | 0.691412 | 0.88151 | 0.871025 | 0.803156 | 0.75667 | 0.658845 | 0.46614 | 0.325065 | 0.187217 | 0.128518 | 0.0654756 | 0.0376032 | 0.0294501 | 0.208287 | 0.795531 | 0.968615 | 0.860191 | 0.740662 | 0.880553 | 1.22562 | 1.56012 | 1.5417 | 1.50003 | 1.18318 | 0.780035 | 0.538677 | 0.301235 | 0.186374 | 0.0785952 | 0.050313 | 0.0412118 |
49.78666648 | 26.64166676 | 0.187345 | 0.714832 | 0.827014 | 0.730654 | 0.619056 | 0.697802 | 0.889657 | 0.879075 | 0.810579 | 0.763663 | 0.664935 | 0.470449 | 0.32807 | 0.188948 | 0.129706 | 0.0660807 | 0.0379507 | 0.0297223 | 0.210212 | 0.802884 | 0.977567 | 0.868141 | 0.747508 | 0.888692 | 1.23695 | 1.57454 | 1.55595 | 1.51389 | 1.19412 | 0.787245 | 0.543656 | 0.30402 | 0.188097 | 0.0793216 | 0.050778 | 0.0415928 |
49.78749982 | 26.64166676 | 0.183046 | 0.698427 | 0.808035 | 0.713886 | 0.60485 | 0.681788 | 0.869241 | 0.858902 | 0.791977 | 0.746138 | 0.649675 | 0.459653 | 0.320541 | 0.184611 | 0.126729 | 0.0645643 | 0.0370798 | 0.0290402 | 0.205388 | 0.784459 | 0.955133 | 0.848219 | 0.730353 | 0.868297 | 1.20856 | 1.53841 | 1.52024 | 1.47915 | 1.16672 | 0.769179 | 0.531179 | 0.297043 | 0.18378 | 0.0775013 | 0.0496127 | 0.0406383 |
49.78833315 | 26.64166676 | 0.186224 | 0.710552 | 0.822064 | 0.72628 | 0.61535 | 0.693625 | 0.884331 | 0.873813 | 0.805727 | 0.759092 | 0.660954 | 0.467633 | 0.326106 | 0.187816 | 0.128929 | 0.0656852 | 0.0377236 | 0.0295443 | 0.208954 | 0.798078 | 0.971715 | 0.862944 | 0.743033 | 0.883372 | 1.22954 | 1.56511 | 1.54664 | 1.50483 | 1.18697 | 0.782532 | 0.540401 | 0.3022 | 0.186971 | 0.0788468 | 0.050474 | 0.0413438 |
49.78916648 | 26.64166676 | 0.187875 | 0.716855 | 0.829355 | 0.732722 | 0.620808 | 0.699777 | 0.892175 | 0.881563 | 0.812873 | 0.765824 | 0.666816 | 0.47178 | 0.328998 | 0.189482 | 0.130073 | 0.0662678 | 0.0380581 | 0.0298064 | 0.210807 | 0.805156 | 0.980334 | 0.870598 | 0.749623 | 0.891207 | 1.24045 | 1.579 | 1.56035 | 1.51818 | 1.1975 | 0.789473 | 0.545194 | 0.30488 | 0.188629 | 0.0795461 | 0.0509217 | 0.0417105 |
49.78583315 | 26.64083343 | 0.185211 | 0.706689 | 0.817594 | 0.722331 | 0.612005 | 0.689853 | 0.879523 | 0.869061 | 0.801346 | 0.754964 | 0.65736 | 0.46509 | 0.324333 | 0.186795 | 0.128228 | 0.065328 | 0.0375184 | 0.0293837 | 0.207818 | 0.793738 | 0.966432 | 0.858252 | 0.738993 | 0.878568 | 1.22286 | 1.5566 | 1.53823 | 1.49665 | 1.18052 | 0.778277 | 0.537463 | 0.300556 | 0.185954 | 0.0784181 | 0.0501996 | 0.041119 |
49.78666648 | 26.64083343 | 0.186337 | 0.710986 | 0.822565 | 0.726723 | 0.615726 | 0.694048 | 0.884871 | 0.874346 | 0.806218 | 0.759555 | 0.661357 | 0.467918 | 0.326305 | 0.187931 | 0.129008 | 0.0657252 | 0.0377466 | 0.0295624 | 0.209082 | 0.798565 | 0.972308 | 0.863471 | 0.743486 | 0.88391 | 1.23029 | 1.56607 | 1.54758 | 1.50575 | 1.1877 | 0.78301 | 0.540731 | 0.302384 | 0.187085 | 0.0788949 | 0.0505048 | 0.041369 |
49.78749982 | 26.64083343 | 0.186019 | 0.709773 | 0.821162 | 0.725483 | 0.614676 | 0.692864 | 0.883361 | 0.872854 | 0.804843 | 0.758259 | 0.660229 | 0.46712 | 0.325748 | 0.18761 | 0.128788 | 0.0656131 | 0.0376822 | 0.0295119 | 0.208725 | 0.797202 | 0.970649 | 0.861998 | 0.742218 | 0.882403 | 1.22819 | 1.5634 | 1.54494 | 1.50318 | 1.18567 | 0.781674 | 0.539808 | 0.301868 | 0.186766 | 0.0787603 | 0.0504187 | 0.0412984 |
49.78833315 | 26.64083343 | 0.186019 | 0.709773 | 0.821162 | 0.725483 | 0.614676 | 0.692864 | 0.883361 | 0.872854 | 0.804843 | 0.758259 | 0.660229 | 0.46712 | 0.325748 | 0.18761 | 0.128788 | 0.0656131 | 0.0376822 | 0.0295119 | 0.208725 | 0.797202 | 0.970649 | 0.861998 | 0.742218 | 0.882403 | 1.22819 | 1.5634 | 1.54494 | 1.50318 | 1.18567 | 0.781674 | 0.539808 | 0.301868 | 0.186766 | 0.0787603 | 0.0504187 | 0.0412984 |
49.78916648 | 26.64083343 | 0.185403 | 0.707421 | 0.81844 | 0.723079 | 0.612638 | 0.690568 | 0.880434 | 0.869962 | 0.802176 | 0.755746 | 0.658041 | 0.465572 | 0.324669 | 0.186989 | 0.128361 | 0.0653957 | 0.0375573 | 0.0294141 | 0.208033 | 0.79456 | 0.967433 | 0.859141 | 0.739758 | 0.879478 | 1.22412 | 1.55822 | 1.53982 | 1.4982 | 1.18174 | 0.779083 | 0.538019 | 0.300868 | 0.186147 | 0.0784993 | 0.0502516 | 0.0411615 |
49.78999982 | 26.64083343 | 0.187873 | 0.716845 | 0.829343 | 0.732711 | 0.6208 | 0.699767 | 0.892162 | 0.88155 | 0.812862 | 0.765814 | 0.666807 | 0.471774 | 0.328994 | 0.18948 | 0.130071 | 0.0662668 | 0.0380576 | 0.029806 | 0.210804 | 0.805145 | 0.98032 | 0.870586 | 0.749612 | 0.891194 | 1.24043 | 1.57897 | 1.56033 | 1.51816 | 1.19748 | 0.789462 | 0.545186 | 0.304876 | 0.188626 | 0.079545 | 0.050921 | 0.0417099 |
49.78583315 | 26.6400001 | 0.18607 | 0.709966 | 0.821385 | 0.72568 | 0.614842 | 0.693052 | 0.883601 | 0.873091 | 0.805061 | 0.758465 | 0.660408 | 0.467246 | 0.325837 | 0.187661 | 0.128823 | 0.0656309 | 0.0376924 | 0.0295199 | 0.208781 | 0.797419 | 0.970913 | 0.862232 | 0.742419 | 0.882642 | 1.22853 | 1.56382 | 1.54536 | 1.50359 | 1.18599 | 0.781886 | 0.539955 | 0.30195 | 0.186816 | 0.0787817 | 0.0504323 | 0.0413096 |
49.78666648 | 26.6400001 | 0.182023 | 0.694524 | 0.803519 | 0.709896 | 0.601469 | 0.677978 | 0.864382 | 0.854101 | 0.787551 | 0.741968 | 0.646044 | 0.457084 | 0.31875 | 0.18358 | 0.126021 | 0.0642034 | 0.0368726 | 0.0288779 | 0.20424 | 0.780074 | 0.949795 | 0.843478 | 0.726271 | 0.863444 | 1.20181 | 1.52981 | 1.51175 | 1.47088 | 1.1602 | 0.76488 | 0.528211 | 0.295382 | 0.182753 | 0.0770681 | 0.0493354 | 0.0404111 |
Key Stats about Data
Column name | Description | Type |
---|---|---|
longitude | Geographical Longitude of the center of the grid | float |
latitude | Geographical Latitude of the center of the grid | float |
female_0 | Female population in 100 meters of age 0 – 1 years old | float |
female_1 | Female population in 100 meters of age 1-5 years old | float |
female_5 | Female population in 100 meters of age 5-10 years old | float |
female_10 | Female population in 100 meters of age 10 – 15 years old | float |
female_15 | Female population in 100 meters of age 15 – 20 years old | float |
female_20 | Female population in 100 meters of age 20 – 25 years old | float |
female_25 | Female population in 100 meters of age 25 – 30 years old | float |
female_30 | Female population in 100 meters of age 30 – 35 years old | float |
female_35 | Female population in 100 meters of age 35- 40 years old | float |
female_40 | Female population in 100 meters of age 40 – 45 years old | float |
female_45 | Female population in 100 meters of age 45 – 50 years old | float |
female_50 | Female population in 100 meters of age 50 years old | float |
female_55 | Female population in 100 meters of age 55 years old | float |
female_60 | Female population in 100 meters of age 60 years old | float |
female_65 | Female population in 100 meters of age 65 years old | float |
female_70 | Female population in 100 meters of age 70 years old | float |
female_75 | Female population in 100 meters of age 75 years old | float |
female_80 | Female population in 100 meters of age 80 years old | float |
male_0 | Male population in 100 meters of age 0 – 1 years old | float |
male_1 | Male population in 100 meters of age 1-5 years old | float |
male_5 | Male population in 100 meters of age 5-10 years old | float |
male_10 | Male population in 100 meters of age 10 – 15 years old | float |
male_15 | Male population in 100 meters of age 15 – 20 years old | float |
male_20 | Male population in 100 meters of age 20 – 25 years old | float |
male_25 | Male population in 100 meters of age 25 – 30 years old | float |
male_30 | Male population in 100 meters of age 30 – 35 years old | float |
male_35 | Male population in 100 meters of age 35- 40 years old | float |
male_40 | Male population in 100 meters of age 40 – 45 years old | float |
male_45 | Male population in 100 meters of age 45 – 50 years old | float |
male_50 | Male population in 100 meters of age 50 years old | float |
male_55 | Male population in 100 meters of age 55 years old | float |
male_60 | Male population in 100 meters of age 60 years old | float |
male_65 | Male population in 100 meters of age 65 years old | float |
male_70 | Male population in 100 meters of age 70 years old | float |
male_75 | Male population in 100 meters of age 75 years old | float |
male_80 | Male population in 100 meters of age 80 years old | float |
Use Cases
Urban Planning for Elderly-Friendly Infrastructure
Utilize demographic data to identify areas with a high population of individuals aged 65 and above. Plan and design infrastructure enhancements such as accessible pathways, seating, and recreational facilities to cater to the needs of this age group.
Retail and Service Business Planning
Guide business planning by understanding local demographics. Determine the demand for specific products and services based on the age distribution in different areas, enabling businesses to cater to the unique preferences of residents.
Age-Driven Hospitality Services
Create unique hospitality experiences using demographic insights. Develop hotel packages, travel tours, and entertainment offerings that cater to the preferences of distinct age groups, ensuring memorable experiences for every guest.
Retail Location Optimization
Optimize store locations based on age distribution data. Choose prime retail spots in areas with a higher concentration of specific age groups, ensuring maximum foot traffic and tailored product offerings. View this data on interactive dashboard to assess population distribution and evaluate asset placement and new store opening