Categories:
Share:

Description

 

Population Demographics data in Abu Dhabi, UAE – POI data

Population demographics for United Arab Emirates in a high-resolution data format disaggregated to be high resolution.

Business Model:
One time purchase
Aggregation Date:
12 May 2023

Raw Data Table

longitudelatitudefemale_0female_1female_5female_10female_15female_20female_25female_30female_35female_40female_45female_50female_55female_60female_65female_70female_75female_80male_0male_1male_5male_10male_15male_20male_25male_30male_35male_40male_45male_50male_55male_60male_65male_70male_75male_80
49.7483331526.67750010.1523620.5813510.6725850.5942180.503460.5675010.7235310.7149250.6592190.6210640.5407710.3826020.2668090.1536650.1054860.05374140.03086420.02417220.1709590.6529610.7950250.7060330.6079250.7227461.005971.280521.265411.23120.9711410.6402420.4421380.247250.1529730.06450990.04129620.0338261
49.7483331526.676666760.1591090.6070940.7023690.6205310.5257530.5926310.755570.7465830.688410.6485660.5647170.3995440.2786240.160470.1101570.05612120.03223090.02524260.178530.6818750.8302310.7372970.6348450.754751.050521.337231.321441.285721.014140.6685930.4617170.2581980.1597470.06736650.04312480.035324
49.7491664826.676666760.1739560.6637460.7679110.6784370.5748150.6479330.8260770.8162510.752650.7090870.6174140.4368280.3046240.1754440.1204360.06135820.03523860.02759810.1951890.7455050.9077050.8060990.6940860.825181.148551.462011.444751.40571.108780.7309840.5048030.2822930.1746540.07365280.04714910.0386203
49.7499998226.676666760.1737030.6627770.7667910.6774470.5739760.6469880.8248720.815060.7515520.7080530.6165130.436190.304180.1751880.1202610.06126870.03518710.02755790.1949050.7444180.906380.8049230.6930740.8239771.146871.459881.442651.403651.107160.7299170.5040660.2818810.1743990.07354540.04708030.0385639
49.7833331526.643333430.1565250.5972340.6909620.6104530.5172150.5830060.7432990.7344580.677230.6380320.5555460.3930550.2740990.1578640.1083680.05520980.03170740.02483260.175630.6708010.8167470.7253230.6245340.7424921.033461.315511.299981.264840.9976740.6577350.4542180.2540050.1571530.06627240.04242450.0347503
49.7858331526.643333430.1839890.7020250.8121980.7175640.6079650.68530.8737180.8633260.7960570.7499810.6530220.462020.3221920.1855620.1273820.06489680.03727080.02918980.2064460.78850.9600530.8525880.7341150.872771.214791.546331.528071.486771.172730.7731410.5339150.2985730.1847270.07790050.04986830.0408476
49.7866664826.643333430.1871070.7139220.8259620.7297240.6182690.6969140.8885250.8779570.8095480.7626920.6640890.469850.3276530.1887070.1295410.06599670.03790250.02968450.2099450.8018630.9763240.8670370.7465570.8875611.235371.572541.553971.511971.19260.7862440.5429640.3036330.1878570.07922070.05071340.0415398
49.7858331526.64250010.1853130.7070770.8180430.7227280.6123410.6902320.8800060.8695390.8017860.7553790.6577210.4653450.3245110.1868980.1282990.06536390.0375390.02939980.2079320.7941740.9669620.8587240.7393980.8790511.223531.557461.539071.497471.181170.7787050.5377580.3007210.1860560.07846110.05022710.0411415
49.7866664826.64250010.1860070.7097240.8211050.7254330.6146330.6928160.88330.8727940.8047880.7582070.6601830.4670870.3257260.1875980.1287790.06560860.03767960.02950990.208710.7971470.9705820.8619380.7421660.8823421.228111.563291.544831.503081.185590.781620.5397710.3018470.1867530.07875490.05041520.0412956
49.7874998226.64250010.1952660.7450560.8619810.7615470.6452310.7273060.9272730.9162430.8448510.7959520.6930490.490340.3419410.1969360.135190.06887470.03955530.0309790.21910.8368311.01890.9048470.7791130.9262661.289251.641111.621741.57791.244610.8205310.5666420.3168740.196050.08267540.05292490.0433513
49.7883331526.64250010.2117380.8079060.9346950.8257880.699660.7886591.005490.9935350.916120.8630960.7515120.5317030.3707860.2135490.1465940.07468480.04289210.03359230.2375830.9074231.104850.9811770.8448361.00441.3981.779551.758541.711011.34960.8897480.6144420.3436040.2125880.08964970.05738950.0470083
49.7858331526.641666760.185630.7082850.8194410.7239630.6133870.6914120.881510.8710250.8031560.756670.6588450.466140.3250650.1872170.1285180.06547560.03760320.02945010.2082870.7955310.9686150.8601910.7406620.8805531.225621.560121.54171.500031.183180.7800350.5386770.3012350.1863740.07859520.0503130.0412118
49.7866664826.641666760.1873450.7148320.8270140.7306540.6190560.6978020.8896570.8790750.8105790.7636630.6649350.4704490.328070.1889480.1297060.06608070.03795070.02972230.2102120.8028840.9775670.8681410.7475080.8886921.236951.574541.555951.513891.194120.7872450.5436560.304020.1880970.07932160.0507780.0415928
49.7874998226.641666760.1830460.6984270.8080350.7138860.604850.6817880.8692410.8589020.7919770.7461380.6496750.4596530.3205410.1846110.1267290.06456430.03707980.02904020.2053880.7844590.9551330.8482190.7303530.8682971.208561.538411.520241.479151.166720.7691790.5311790.2970430.183780.07750130.04961270.0406383
49.7883331526.641666760.1862240.7105520.8220640.726280.615350.6936250.8843310.8738130.8057270.7590920.6609540.4676330.3261060.1878160.1289290.06568520.03772360.02954430.2089540.7980780.9717150.8629440.7430330.8833721.229541.565111.546641.504831.186970.7825320.5404010.30220.1869710.07884680.0504740.0413438
49.7891664826.641666760.1878750.7168550.8293550.7327220.6208080.6997770.8921750.8815630.8128730.7658240.6668160.471780.3289980.1894820.1300730.06626780.03805810.02980640.2108070.8051560.9803340.8705980.7496230.8912071.240451.5791.560351.518181.19750.7894730.5451940.304880.1886290.07954610.05092170.0417105
49.7858331526.640833430.1852110.7066890.8175940.7223310.6120050.6898530.8795230.8690610.8013460.7549640.657360.465090.3243330.1867950.1282280.0653280.03751840.02938370.2078180.7937380.9664320.8582520.7389930.8785681.222861.55661.538231.496651.180520.7782770.5374630.3005560.1859540.07841810.05019960.041119
49.7866664826.640833430.1863370.7109860.8225650.7267230.6157260.6940480.8848710.8743460.8062180.7595550.6613570.4679180.3263050.1879310.1290080.06572520.03774660.02956240.2090820.7985650.9723080.8634710.7434860.883911.230291.566071.547581.505751.18770.783010.5407310.3023840.1870850.07889490.05050480.041369
49.7874998226.640833430.1860190.7097730.8211620.7254830.6146760.6928640.8833610.8728540.8048430.7582590.6602290.467120.3257480.187610.1287880.06561310.03768220.02951190.2087250.7972020.9706490.8619980.7422180.8824031.228191.56341.544941.503181.185670.7816740.5398080.3018680.1867660.07876030.05041870.0412984
49.7883331526.640833430.1860190.7097730.8211620.7254830.6146760.6928640.8833610.8728540.8048430.7582590.6602290.467120.3257480.187610.1287880.06561310.03768220.02951190.2087250.7972020.9706490.8619980.7422180.8824031.228191.56341.544941.503181.185670.7816740.5398080.3018680.1867660.07876030.05041870.0412984
49.7891664826.640833430.1854030.7074210.818440.7230790.6126380.6905680.8804340.8699620.8021760.7557460.6580410.4655720.3246690.1869890.1283610.06539570.03755730.02941410.2080330.794560.9674330.8591410.7397580.8794781.224121.558221.539821.49821.181740.7790830.5380190.3008680.1861470.07849930.05025160.0411615
49.7899998226.640833430.1878730.7168450.8293430.7327110.62080.6997670.8921620.881550.8128620.7658140.6668070.4717740.3289940.189480.1300710.06626680.03805760.0298060.2108040.8051450.980320.8705860.7496120.8911941.240431.578971.560331.518161.197480.7894620.5451860.3048760.1886260.0795450.0509210.0417099
49.7858331526.64000010.186070.7099660.8213850.725680.6148420.6930520.8836010.8730910.8050610.7584650.6604080.4672460.3258370.1876610.1288230.06563090.03769240.02951990.2087810.7974190.9709130.8622320.7424190.8826421.228531.563821.545361.503591.185990.7818860.5399550.301950.1868160.07878170.05043230.0413096
49.7866664826.64000010.1820230.6945240.8035190.7098960.6014690.6779780.8643820.8541010.7875510.7419680.6460440.4570840.318750.183580.1260210.06420340.03687260.02887790.204240.7800740.9497950.8434780.7262710.8634441.201811.529811.511751.470881.16020.764880.5282110.2953820.1827530.07706810.04933540.0404111

Key Stats about Data

Column nameDescriptionType
longitudeGeographical Longitude of the center of the gridfloat
latitudeGeographical Latitude of the center of the gridfloat
female_0Female population in 100 meters of age 0 – 1 years oldfloat
female_1Female population in 100 meters of age 1-5 years oldfloat
female_5Female population in 100 meters of age 5-10 years oldfloat
female_10Female population in 100 meters of age 10 – 15 years oldfloat
female_15Female population in 100 meters of age 15 – 20 years oldfloat
female_20Female population in 100 meters of age 20 – 25 years oldfloat
female_25Female population in 100 meters of age 25 – 30 years oldfloat
female_30Female population in 100 meters of age 30 – 35 years oldfloat
female_35Female population in 100 meters of age 35- 40 years oldfloat
female_40Female population in 100 meters of age 40 – 45 years oldfloat
female_45Female population in 100 meters of age 45 – 50 years oldfloat
female_50Female population in 100 meters of age 50 years oldfloat
female_55Female population in 100 meters of age 55 years oldfloat
female_60Female population in 100 meters of age 60 years oldfloat
female_65Female population in 100 meters of age 65 years oldfloat
female_70Female population in 100 meters of age 70 years oldfloat
female_75Female population in 100 meters of age 75 years oldfloat
female_80Female population in 100 meters of age 80 years oldfloat
male_0Male population in 100 meters of age 0 – 1 years oldfloat
male_1Male population in 100 meters of age 1-5 years oldfloat
male_5Male population in 100 meters of age 5-10 years oldfloat
male_10Male population in 100 meters of age 10 – 15 years oldfloat
male_15Male population in 100 meters of age 15 – 20 years oldfloat
male_20Male population in 100 meters of age 20 – 25 years oldfloat
male_25Male population in 100 meters of age 25 – 30 years oldfloat
male_30Male population in 100 meters of age 30 – 35 years oldfloat
male_35Male population in 100 meters of age 35- 40 years oldfloat
male_40Male population in 100 meters of age 40 – 45 years oldfloat
male_45Male population in 100 meters of age 45 – 50 years oldfloat
male_50Male population in 100 meters of age 50 years oldfloat
male_55Male population in 100 meters of age 55 years oldfloat
male_60Male population in 100 meters of age 60 years oldfloat
male_65Male population in 100 meters of age 65 years oldfloat
male_70Male population in 100 meters of age 70 years oldfloat
male_75Male population in 100 meters of age 75 years oldfloat
male_80Male population in 100 meters of age 80 years oldfloat

Use Cases

Urban Planning for Elderly-Friendly Infrastructure

Utilize demographic data to identify areas with a high population of individuals aged 65 and above. Plan and design infrastructure enhancements such as accessible pathways, seating, and recreational facilities to cater to the needs of this age group.

Retail and Service Business Planning

Guide business planning by understanding local demographics. Determine the demand for specific products and services based on the age distribution in different areas, enabling businesses to cater to the unique preferences of residents.

Age-Driven Hospitality Services

Create unique hospitality experiences using demographic insights. Develop hotel packages, travel tours, and entertainment offerings that cater to the preferences of distinct age groups, ensuring memorable experiences for every guest.

Retail Location Optimization

Optimize store locations based on age distribution data. Choose prime retail spots in areas with a higher concentration of specific age groups, ensuring maximum foot traffic and tailored product offerings. View this data on interactive dashboard to assess population distribution and evaluate asset placement and new store opening